Mostrando entradas con la etiqueta algebra basica. Mostrar todas las entradas
Mostrando entradas con la etiqueta algebra basica. Mostrar todas las entradas

martes, 20 de agosto de 2013

Problema de Productos Notables

La suma de dos números es 10 y la suma de sus cubos es 100. El producto de estos números es igual a (Admisión UNAC 2012-I)
A) 30 B) 20 C) 40 D) 25 E) 10

--
Productos notables es el nombre que reciben multiplicaciones con expresiones algebraicas que cumplen ciertas reglas fijas y cuyo resultado se puede escribir mediante simple inspección, sin verificar la multiplicación. Su aplicación simplifica y sistematiza la resolución de muchas multiplicaciones habituales.

Cada producto notable corresponde a una fórmula de factorización. Por ejemplo, la factorización de una diferencia de cuadrados perfectos es un producto de dos binomios conjugados, y recíprocamente.

domingo, 30 de junio de 2013

Problema de teoria de exponentes



Teoría de Exponentes
Es un conjunto de fórmulas que relacionan a los exponentes de las expresiones algebraicas de un solo término, cuando entre éstas expresiones algebraicas se realizan operaciones de multiplicación, división, potenciación y radicación en un número limitado de veces.
Finalidad: Estudiar todas las clases de exponentes que existen y las relaciones que se dan entre ellos.

viernes, 22 de febrero de 2013

Ejercicio de Racionalizacion 1



Racionalizar radicales consiste en quitar las raíces del denominador. Racionalizar cuando en el denominador hay sumas, racionalizar cuando no hay sumas. Ejercicios de radicales.


Ejercicio 2

Ejercicio de Racionalización 2



La racionalización de radicales es un proceso en donde se tiene que eliminar la raíz o raíces que están en el denominador de una fracción.
Racionalizar una fracción con raíces en el denominador, es encontrar otra expresión equivalente que no tenga raíces en el denominador. Para ello se multiplica el numerador y el denominador por una expresión adecuada, de forma que al operar, se elimine la raíz del denominador.

Ejercicio 3

jueves, 14 de febrero de 2013

Ejercicio de productos notables



76. Simplificar (√x+√y)^2-(√x-√y)^2
A) 2√xy
B) 2(x-y)
C) 4√xy
D) √x-√y
E) √x+√y

--
Universidades: PUCP - UPC - Pácifico - ULima - ESAN - USMP - Cayetano - UTP - USIL - UNI- TECSUP - UWienier.
Curso: Álgebra
Tema:Productos Notables
Tipo: Problema de examen de admisión

viernes, 28 de diciembre de 2012

Máximo valor expresión algebraica

Si "x" toma un valor entero entre 4 y 20, ademas "y" toma un valor entero entre 1 y 9, ¿cuál es el máximo valor de la expresión x-1/y?
A) 153/8
B) 151/8
C) 9/2
D) 39/8
E) 37/2


..
Pregunta tomada en el Examen de Admisión UNAC 2012-I - Universidad Nacional del Callao. 

domingo, 21 de octubre de 2012

Problema Productos Notables 101 - Problema de Aplicación

Si an + bn = 3√(an bn) hallar E = an/bn + bn/an
A) 7 B) 8 C) 9 D) 10 E) 11


Productos notables es el nombre que reciben multiplicaciones con expresiones algebraicas cuyo resultado se puede escribir mediante simple inspección, sin verificar la multiplicación que cumplen ciertas reglas fijas. Su aplicación simplifica y sistematiza la resolución de muchas multiplicaciones habituales.
Cada producto notable corresponde a una fórmula de factorización. Por ejemplo, la factorización de una diferencia de cuadrados perfectos es un producto de dos binomios conjugados, y recíprocamente.

domingo, 13 de mayo de 2012

Ejemplos de operaciones con Radicales





Historia de la raíces.
El descubrimiento de raíz cuadrada como un número irracional se atribuye generalmente al pitagórico Hippasus de Metapontum, quien fue el primero en producir la demostración (vía demostración geométrica) de la irracionalidad. La historia narra que precisamente descubrió la irracionalidad de la raíz de 2 cuando intentaba averiguar una expresión racional del mismo. Sin embargo Pitágoras creía en la definición absoluta de los números como media, y esto le obligaba a no creer en la existencia de los números irracionales. Por esta razón estuvo ya desde el principio en contra de esa demostración, por esta razón fue sentenciado a la pena capital por sus compañeros pitagóricos.

Los babilonios encontraron para √2  la aproximación 1.414213  con un algoritmo usado por Herón de Alejandría en su Métrica y que usaban ya los babilonios desde el año 1900  a.C. También lo usarían los Indios cerca del año 700 A.C. Según este algoritmo iterativo, se parte de un racional semilla r(1) entre √a y √(a+1), y para las siguientes aproximaciones r(n+1) se toma la media aritmética de r(n) y el racional a/r(n), siendo a el natural no cuadrado cuya raíz cuadrada quiere calcularse, es decir:
r(n+1) = [r(n) + a/r(n)]/2.

Leonardo de Pisa, Fibonacci, nombre con el que pasará a la Historia, aprovechó sus viajes
comerciales por todo el mediterráneo, Egipto, Siria, Sicilia, Grecia..., en uno de estos viajes  pudo entablar contacto y discutir con los matemáticos más notables de la época y para descubrir y estudiar a fondo los Elementos de Euclides, que tomará como modelo de estilo y de rigor. De su deseo de poner en orden todo cuánto había aprendido de aritmética y álgebra, y de brindar a sus colegas comerciantes un potente sistema de cálculo, cuyas ventajas él había ya experimentado, nace, en 1202, el Liber abaci, la primera gran obra matemática de la Edad Media. En él aparecen por primera vez en Occidente, los nueve cifras hindúes y el signo del cero. Leonardo de Pisa brinda en su obra reglas claras para realizar operaciones con estas cifras tanto con números enteros como con fracciones, pero también proporciona la regla de tres simple y compuesta, normas para calcular la raíz cuadrada de un número, así como instrucciones para resolver ecuaciones de primer grado y algunas de segundo grado.

References: Babylonian Square Roots
Nelson, D., Joseph, G. and Williams, J. (1993). Multicultural Mathematics: Teaching Mathematics from a Global Perspective. New York: Oxford University Press.


Educación secundaria, enseñanza media, segundo ciclo de la educación general, Educación Secundaria Obligatoria (E.S.O), "escuela secundaria", "escuela preparatoria", high schools.

sábado, 12 de mayo de 2012

Simplificar Radicales Tres Ejercicios





Historia de la raíces.
El descubrimiento de raíz cuadrada como un número irracional se atribuye generalmente al pitagórico Hippasus de Metapontum, quien fue el primero en producir la demostración (vía demostración geométrica) de la irracionalidad. La historia narra que precisamente descubrió la irracionalidad de la raíz de 2 cuando intentaba averiguar una expresión racional del mismo. Sin embargo Pitágoras creía en la definición absoluta de los números como media, y esto le obligaba a no creer en la existencia de los números irracionales. Por esta razón estuvo ya desde el principio en contra de esa demostración, por esta razón fue sentenciado a la pena capital por sus compañeros pitagóricos.

Los babilonios encontraron para √2  la aproximación 1.414213  con un algoritmo usado por Herón de Alejandría en su Métrica y que usaban ya los babilonios desde el año 1900  a.C. También lo usarían los Indios cerca del año 700 A.C. Según este algoritmo iterativo, se parte de un racional semilla r(1) entre √a y √(a+1), y para las siguientes aproximaciones r(n+1) se toma la media aritmética de r(n) y el racional a/r(n), siendo a el natural no cuadrado cuya raíz cuadrada quiere calcularse, es decir:
r(n+1) = [r(n) + a/r(n)]/2.

Leonardo de Pisa, Fibonacci, nombre con el que pasará a la Historia, aprovechó sus viajes
comerciales por todo el mediterráneo, Egipto, Siria, Sicilia, Grecia..., en uno de estos viajes  pudo entablar contacto y discutir con los matemáticos más notables de la época y para descubrir y estudiar a fondo los Elementos de Euclides, que tomará como modelo de estilo y de rigor. De su deseo de poner en orden todo cuánto había aprendido de aritmética y álgebra, y de brindar a sus colegas comerciantes un potente sistema de cálculo, cuyas ventajas él había ya experimentado, nace, en 1202, el Liber abaci, la primera gran obra matemática de la Edad Media. En él aparecen por primera vez en Occidente, los nueve cifras hindúes y el signo del cero. Leonardo de Pisa brinda en su obra reglas claras para realizar operaciones con estas cifras tanto con números enteros como con fracciones, pero también proporciona la regla de tres simple y compuesta, normas para calcular la raíz cuadrada de un número, así como instrucciones para resolver ecuaciones de primer grado y algunas de segundo grado.

References: Babylonian Square Roots
Nelson, D., Joseph, G. and Williams, J. (1993). Multicultural Mathematics: Teaching Mathematics from a Global Perspective. New York: Oxford University Press.


Educación secundaria, enseñanza media, segundo ciclo de la educación general, Educación Secundaria Obligatoria (E.S.O), "escuela secundaria", "escuela preparatoria", high schools.

lunes, 23 de abril de 2012

Ecuacion Exponencial con Infinitos Terminos Repetidos




Una ecuación exponencial es aquella ecuación en la que la variable a despejar se encuentra el un exponente. Es decir, un número (u otra variable) está elevada a la variable a despejar, comúnmente llamada x. Para resolver dichas ecuaciones se recurren a las propiedades de la potenciación, radicación y logaritmos.
Algo de Historia.
En algunos de los escritos de Euclides aparece un enunciado que hace referencia a los exponentes. En la edad media, en el siglo XIV,  Nicolle Oresme demuestra todas las reglas necesarias para trabajar con exponentes positivos.
Un siglo después N. Choquet retoma este trabajo y agrega los exponentes negativos.
Es en esta época cuando se trabaja con mayor fuerza las funciones exponenciales.
Este trabajo lo completa el matemático alemán Michael Stifel, en el Siglo XVI exponentes racionales.

Ecuacion Exponencial con Infinitos Terminos Repetidos




Una ecuación exponencial es aquella ecuación en la que la variable a despejar se encuentra el un exponente. Es decir, un número (u otra variable) está elevada a la variable a despejar, comúnmente llamada x. Para resolver dichas ecuaciones se recurren a las propiedades de la potenciación, radicación y logaritmos.
Algo de Historia.
En algunos de los escritos de Euclides aparece un enunciado que hace referencia a los exponentes. En la edad media, en el siglo XIV,  Nicolle Oresme demuestra todas las reglas necesarias para trabajar con exponentes positivos.
Un siglo después N. Choquet retoma este trabajo y agrega los exponentes negativos.
Es en esta época cuando se trabaja con mayor fuerza las funciones exponenciales.
Este trabajo lo completa el matemático alemán Michael Stifel, en el Siglo XVI exponentes racionales.

martes, 27 de marzo de 2012

sistema de inecuaciones - situaciones algebraicas 102




Problema tomado en el examen de ingreso a la Universidad Nacional Mayor de San Marcos UNMSM 2012-II.



Un sistema de inecuaciones es un grupo de dos o más inecuaciones. El conjunto solución del sistema es el conjunto de todas las soluciones comunes a todas las inecuaciones del sistema.

En un sistema de inecuaciones intervienen dos o más inecuaciones. No todos los sistemas de inecuaciones tienen solución.

Es un conjunto de inecuaciones de primer grado con la misma variable:

    \left \{
        \begin{array}{rcrcrcr}
             ax+b<0 \\
             cx+d \ge 0 \\
     ... \\
             lx+m>0 \\
        \end{array}
    \right .
La solución del sistema será el conjunto de números reales que verifican a la vez todas las inecuaciones.

proporcionalidad y numero factorial - situaciones aritmeticas 203



Problema tomado en el examen de ingreso a la Universidad Nacional Mayor de San Marcos UNMSM 2012-II.

El factorial de un número.
La operación de factorial aparece en muchas áreas de las matemáticas, particularmente en combinatoria y análisis matemático. De manera fundamental, el factorial de n representa el número de formas distintas de ordenar n objetos distintos. Este hecho ha sido conocido desde hace varios siglos, en el s. XII por los estudiosos indios. La notación actual n! fue usada por primera vez por Christian Kramp en 1803.

La definición de la función factorial también se puede extender a números no naturales manteniendo sus propiedades fundamentales, pero se requieren matemáticas avanzadas, particularmente del análisis matemático

Varios científicos trabajaron sobre este asunto, pero los principales inventores fueron J. Stirling en 1730, que proporciona la fórmula asintótica tras colaborar con De Moivre, luego Euler en 1751 y finalmente C. Kramp y Arbogast, que introduce entre 1808 y 1816 la notación actual n!. Por supuesto otros científicos como Taylor también trabajaron bastante con esta notación.

situaciones algebraicas 103 - logaritmos



Problema tomado en el examen de ingreso a la Universidad Nacional Mayor de San Marcos UNMSM 2012-II.

Los logaritmos.
La primera mención del logaritmo natural fue dada por Nikolaus Mercator en su trabajo Logarithmotechnia publicado en 1668,1 a pesar de que el profesor de matemáticas John Speidell ya lo había hecho en 1619 recopilando una tabla sobre valores del logaritmo natural.3 Fue llamado formalmente como logaritmo hiperbólico,4 puesto que sus valores correspondían con los del área hallada bajo la hipérbola. A veces también se refiere al logaritmo neperiano, a pesar de que el significado original de este término es ligeramente diferente.

A partir del siglo XVI, los cálculos que se precisaban hacer, debido principalmente a la expansión comercial y al perfeccionamiento de las técnicas de navegación, eran de tal magnitud que surgía la necesidad de encontrar algoritmos menos laboriosos que los utilizados hasta entonces, es decir, algoritmos de la multiplicación, de la división, etc.

El descubrimiento de los logaritmos no se produjo aisladamente, por un único proceso. Dos caminos condujeron a su hallazgo: los cálculos trigonométricos para las investigaciones astronómicas aplicables a la navegación, y el cálculo de las riquezas acumuladas en lo que se refiere a las reglas de interés compuesto. Ambos caminos inspiraron respectivamente a John Napier y a Jobst Bürgi en el descubrimiento de los logaritmos.

Henry Briggs, quien fue el primero que hizo las tablas logarítmicas en base 10, en el año 1631, en su obra Logarithmall Arithmetike, explica el objetivo de la invención de los logaritmos: "Los logaritmos son números inventados para resolver más fácilmente los problemas de aritmética y geometría... Con ellos se evitan todas las molestias de las multiplicaciones y de las divisiones; de manera que, en lugar de multiplicaciones, se hacen solamente adiciones, y en lugar de divisiones se hacen sustracciones. La laboriosa operación de extraer raíces, tan poco grata, se efectúa con suma facilidad... En una palabra, con los logaritmos se resuelven con la mayor sencillez y comodidad todos los problemas,no sólo de aritmética y geometría, sino también de astronomía."

situaciones algebraicas 205 - logaritmos y sucesiones



Problema tomado en el examen de ingreso a la Universidad Nacional Mayor de San Marcos UNMSM 2012-II.

Los logaritmos.
La primera mención del logaritmo natural fue dada por Nikolaus Mercator en su trabajo Logarithmotechnia publicado en 1668,1 a pesar de que el profesor de matemáticas John Speidell ya lo había hecho en 1619 recopilando una tabla sobre valores del logaritmo natural.3 Fue llamado formalmente como logaritmo hiperbólico,4 puesto que sus valores correspondían con los del área hallada bajo la hipérbola. A veces también se refiere al logaritmo neperiano, a pesar de que el significado original de este término es ligeramente diferente.

A partir del siglo XVI, los cálculos que se precisaban hacer, debido principalmente a la expansión comercial y al perfeccionamiento de las técnicas de navegación, eran de tal magnitud que surgía la necesidad de encontrar algoritmos menos laboriosos que los utilizados hasta entonces, es decir, algoritmos de la multiplicación, de la división, etc.

El descubrimiento de los logaritmos no se produjo aisladamente, por un único proceso. Dos caminos condujeron a su hallazgo: los cálculos trigonométricos para las investigaciones astronómicas aplicables a la navegación, y el cálculo de las riquezas acumuladas en lo que se refiere a las reglas de interés compuesto. Ambos caminos inspiraron respectivamente a John Napier y a Jobst Bürgi en el descubrimiento de los logaritmos.

Henry Briggs, quien fue el primero que hizo las tablas logarítmicas en base 10, en el año 1631, en su obra Logarithmall Arithmetike, explica el objetivo de la invención de los logaritmos: "Los logaritmos son números inventados para resolver más fácilmente los problemas de aritmética y geometría... Con ellos se evitan todas las molestias de las multiplicaciones y de las divisiones; de manera que, en lugar de multiplicaciones, se hacen solamente adiciones, y en lugar de divisiones se hacen sustracciones. La laboriosa operación de extraer raíces, tan poco grata, se efectúa con suma facilidad... En una palabra, con los logaritmos se resuelven con la mayor sencillez y comodidad todos los problemas,no sólo de aritmética y geometría, sino también de astronomía."

viernes, 23 de marzo de 2012

Simplificar Radicales 10





Historia de la raíces.
El descubrimiento de raíz cuadrada como un número irracional se atribuye generalmente al pitagórico Hippasus de Metapontum, quien fue el primero en producir la demostración (vía demostración geométrica) de la irracionalidad. La historia narra que precisamente descubrió la irracionalidad de la raíz de 2 cuando intentaba averiguar una expresión racional del mismo. Sin embargo Pitágoras creía en la definición absoluta de los números como media, y esto le obligaba a no creer en la existencia de los números irracionales. Por esta razón estuvo ya desde el principio en contra de esa demostración, por esta razón fue sentenciado a la pena capital por sus compañeros pitagóricos.

Los babilonios encontraron para √2  la aproximación 1.414213  con un algoritmo usado por Herón de Alejandría en su Métrica y que usaban ya los babilonios desde el año 1900  a.C. También lo usarían los Indios cerca del año 700 A.C. Según este algoritmo iterativo, se parte de un racional semilla r(1) entre √a y √(a+1), y para las siguientes aproximaciones r(n+1) se toma la media aritmética de r(n) y el racional a/r(n), siendo a el natural no cuadrado cuya raíz cuadrada quiere calcularse, es decir:
r(n+1) = [r(n) + a/r(n)]/2.

Leonardo de Pisa, Fibonacci, nombre con el que pasará a la Historia, aprovechó sus viajes
comerciales por todo el mediterráneo, Egipto, Siria, Sicilia, Grecia..., en uno de estos viajes  pudo entablar contacto y discutir con los matemáticos más notables de la época y para descubrir y estudiar a fondo los Elementos de Euclides, que tomará como modelo de estilo y de rigor. De su deseo de poner en orden todo cuánto había aprendido de aritmética y álgebra, y de brindar a sus colegas comerciantes un potente sistema de cálculo, cuyas ventajas él había ya experimentado, nace, en 1202, el Liber abaci, la primera gran obra matemática de la Edad Media. En él aparecen por primera vez en Occidente, los nueve cifras hindúes y el signo del cero. Leonardo de Pisa brinda en su obra reglas claras para realizar operaciones con estas cifras tanto con números enteros como con fracciones, pero también proporciona la regla de tres simple y compuesta, normas para calcular la raíz cuadrada de un número, así como instrucciones para resolver ecuaciones de primer grado y algunas de segundo grado.

References: Babylonian Square Roots
Nelson, D., Joseph, G. and Williams, J. (1993). Multicultural Mathematics: Teaching Mathematics from a Global Perspective. New York: Oxford University Press.


Educación secundaria, enseñanza media, segundo ciclo de la educación general, Educación Secundaria Obligatoria (E.S.O), "escuela secundaria", "escuela preparatoria", high schools.

Simplificar Radicales 08





Historia de la raíces.
El descubrimiento de raíz cuadrada como un número irracional se atribuye generalmente al pitagórico Hippasus de Metapontum, quien fue el primero en producir la demostración (vía demostración geométrica) de la irracionalidad. La historia narra que precisamente descubrió la irracionalidad de la raíz de 2 cuando intentaba averiguar una expresión racional del mismo. Sin embargo Pitágoras creía en la definición absoluta de los números como media, y esto le obligaba a no creer en la existencia de los números irracionales. Por esta razón estuvo ya desde el principio en contra de esa demostración, por esta razón fue sentenciado a la pena capital por sus compañeros pitagóricos.

Los babilonios encontraron para √2  la aproximación 1.414213  con un algoritmo usado por Herón de Alejandría en su Métrica y que usaban ya los babilonios desde el año 1900  a.C. También lo usarían los Indios cerca del año 700 A.C. Según este algoritmo iterativo, se parte de un racional semilla r(1) entre √a y √(a+1), y para las siguientes aproximaciones r(n+1) se toma la media aritmética de r(n) y el racional a/r(n), siendo a el natural no cuadrado cuya raíz cuadrada quiere calcularse, es decir:
r(n+1) = [r(n) + a/r(n)]/2.

Leonardo de Pisa, Fibonacci, nombre con el que pasará a la Historia, aprovechó sus viajes
comerciales por todo el mediterráneo, Egipto, Siria, Sicilia, Grecia..., en uno de estos viajes  pudo entablar contacto y discutir con los matemáticos más notables de la época y para descubrir y estudiar a fondo los Elementos de Euclides, que tomará como modelo de estilo y de rigor. De su deseo de poner en orden todo cuánto había aprendido de aritmética y álgebra, y de brindar a sus colegas comerciantes un potente sistema de cálculo, cuyas ventajas él había ya experimentado, nace, en 1202, el Liber abaci, la primera gran obra matemática de la Edad Media. En él aparecen por primera vez en Occidente, los nueve cifras hindúes y el signo del cero. Leonardo de Pisa brinda en su obra reglas claras para realizar operaciones con estas cifras tanto con números enteros como con fracciones, pero también proporciona la regla de tres simple y compuesta, normas para calcular la raíz cuadrada de un número, así como instrucciones para resolver ecuaciones de primer grado y algunas de segundo grado.

References: Babylonian Square Roots
Nelson, D., Joseph, G. and Williams, J. (1993). Multicultural Mathematics: Teaching Mathematics from a Global Perspective. New York: Oxford University Press.


Educación secundaria, enseñanza media, segundo ciclo de la educación general, Educación Secundaria Obligatoria (E.S.O), "escuela secundaria", "escuela preparatoria", high schools.

Simplifcar Radicales 07





Historia de la raíces.
El descubrimiento de raíz cuadrada como un número irracional se atribuye generalmente al pitagórico Hippasus de Metapontum, quien fue el primero en producir la demostración (vía demostración geométrica) de la irracionalidad. La historia narra que precisamente descubrió la irracionalidad de la raíz de 2 cuando intentaba averiguar una expresión racional del mismo. Sin embargo Pitágoras creía en la definición absoluta de los números como media, y esto le obligaba a no creer en la existencia de los números irracionales. Por esta razón estuvo ya desde el principio en contra de esa demostración, por esta razón fue sentenciado a la pena capital por sus compañeros pitagóricos.

Los babilonios encontraron para √2  la aproximación 1.414213  con un algoritmo usado por Herón de Alejandría en su Métrica y que usaban ya los babilonios desde el año 1900  a.C. También lo usarían los Indios cerca del año 700 A.C. Según este algoritmo iterativo, se parte de un racional semilla r(1) entre √a y √(a+1), y para las siguientes aproximaciones r(n+1) se toma la media aritmética de r(n) y el racional a/r(n), siendo a el natural no cuadrado cuya raíz cuadrada quiere calcularse, es decir:
r(n+1) = [r(n) + a/r(n)]/2.

Leonardo de Pisa, Fibonacci, nombre con el que pasará a la Historia, aprovechó sus viajes
comerciales por todo el mediterráneo, Egipto, Siria, Sicilia, Grecia..., en uno de estos viajes  pudo entablar contacto y discutir con los matemáticos más notables de la época y para descubrir y estudiar a fondo los Elementos de Euclides, que tomará como modelo de estilo y de rigor. De su deseo de poner en orden todo cuánto había aprendido de aritmética y álgebra, y de brindar a sus colegas comerciantes un potente sistema de cálculo, cuyas ventajas él había ya experimentado, nace, en 1202, el Liber abaci, la primera gran obra matemática de la Edad Media. En él aparecen por primera vez en Occidente, los nueve cifras hindúes y el signo del cero. Leonardo de Pisa brinda en su obra reglas claras para realizar operaciones con estas cifras tanto con números enteros como con fracciones, pero también proporciona la regla de tres simple y compuesta, normas para calcular la raíz cuadrada de un número, así como instrucciones para resolver ecuaciones de primer grado y algunas de segundo grado.

References: Babylonian Square Roots
Nelson, D., Joseph, G. and Williams, J. (1993). Multicultural Mathematics: Teaching Mathematics from a Global Perspective. New York: Oxford University Press.


Educación secundaria, enseñanza media, segundo ciclo de la educación general, Educación Secundaria Obligatoria (E.S.O), "escuela secundaria", "escuela preparatoria", high schools.

Simplificar Radicales 06





Historia de la raíces.
El descubrimiento de raíz cuadrada como un número irracional se atribuye generalmente al pitagórico Hippasus de Metapontum, quien fue el primero en producir la demostración (vía demostración geométrica) de la irracionalidad. La historia narra que precisamente descubrió la irracionalidad de la raíz de 2 cuando intentaba averiguar una expresión racional del mismo. Sin embargo Pitágoras creía en la definición absoluta de los números como media, y esto le obligaba a no creer en la existencia de los números irracionales. Por esta razón estuvo ya desde el principio en contra de esa demostración, por esta razón fue sentenciado a la pena capital por sus compañeros pitagóricos.

Los babilonios encontraron para √2  la aproximación 1.414213  con un algoritmo usado por Herón de Alejandría en su Métrica y que usaban ya los babilonios desde el año 1900  a.C. También lo usarían los Indios cerca del año 700 A.C. Según este algoritmo iterativo, se parte de un racional semilla r(1) entre √a y √(a+1), y para las siguientes aproximaciones r(n+1) se toma la media aritmética de r(n) y el racional a/r(n), siendo a el natural no cuadrado cuya raíz cuadrada quiere calcularse, es decir:
r(n+1) = [r(n) + a/r(n)]/2.

Leonardo de Pisa, Fibonacci, nombre con el que pasará a la Historia, aprovechó sus viajes
comerciales por todo el mediterráneo, Egipto, Siria, Sicilia, Grecia..., en uno de estos viajes  pudo entablar contacto y discutir con los matemáticos más notables de la época y para descubrir y estudiar a fondo los Elementos de Euclides, que tomará como modelo de estilo y de rigor. De su deseo de poner en orden todo cuánto había aprendido de aritmética y álgebra, y de brindar a sus colegas comerciantes un potente sistema de cálculo, cuyas ventajas él había ya experimentado, nace, en 1202, el Liber abaci, la primera gran obra matemática de la Edad Media. En él aparecen por primera vez en Occidente, los nueve cifras hindúes y el signo del cero. Leonardo de Pisa brinda en su obra reglas claras para realizar operaciones con estas cifras tanto con números enteros como con fracciones, pero también proporciona la regla de tres simple y compuesta, normas para calcular la raíz cuadrada de un número, así como instrucciones para resolver ecuaciones de primer grado y algunas de segundo grado.

References: Babylonian Square Roots
Nelson, D., Joseph, G. and Williams, J. (1993). Multicultural Mathematics: Teaching Mathematics from a Global Perspective. New York: Oxford University Press.


Educación secundaria, enseñanza media, segundo ciclo de la educación general, Educación Secundaria Obligatoria (E.S.O), "escuela secundaria", "escuela preparatoria", high schools.

Simplificar Radicales 05





Historia de la raíces.
El descubrimiento de raíz cuadrada como un número irracional se atribuye generalmente al pitagórico Hippasus de Metapontum, quien fue el primero en producir la demostración (vía demostración geométrica) de la irracionalidad. La historia narra que precisamente descubrió la irracionalidad de la raíz de 2 cuando intentaba averiguar una expresión racional del mismo. Sin embargo Pitágoras creía en la definición absoluta de los números como media, y esto le obligaba a no creer en la existencia de los números irracionales. Por esta razón estuvo ya desde el principio en contra de esa demostración, por esta razón fue sentenciado a la pena capital por sus compañeros pitagóricos.

Los babilonios encontraron para √2  la aproximación 1.414213  con un algoritmo usado por Herón de Alejandría en su Métrica y que usaban ya los babilonios desde el año 1900  a.C. También lo usarían los Indios cerca del año 700 A.C. Según este algoritmo iterativo, se parte de un racional semilla r(1) entre √a y √(a+1), y para las siguientes aproximaciones r(n+1) se toma la media aritmética de r(n) y el racional a/r(n), siendo a el natural no cuadrado cuya raíz cuadrada quiere calcularse, es decir:
r(n+1) = [r(n) + a/r(n)]/2.

Leonardo de Pisa, Fibonacci, nombre con el que pasará a la Historia, aprovechó sus viajes
comerciales por todo el mediterráneo, Egipto, Siria, Sicilia, Grecia..., en uno de estos viajes  pudo entablar contacto y discutir con los matemáticos más notables de la época y para descubrir y estudiar a fondo los Elementos de Euclides, que tomará como modelo de estilo y de rigor. De su deseo de poner en orden todo cuánto había aprendido de aritmética y álgebra, y de brindar a sus colegas comerciantes un potente sistema de cálculo, cuyas ventajas él había ya experimentado, nace, en 1202, el Liber abaci, la primera gran obra matemática de la Edad Media. En él aparecen por primera vez en Occidente, los nueve cifras hindúes y el signo del cero. Leonardo de Pisa brinda en su obra reglas claras para realizar operaciones con estas cifras tanto con números enteros como con fracciones, pero también proporciona la regla de tres simple y compuesta, normas para calcular la raíz cuadrada de un número, así como instrucciones para resolver ecuaciones de primer grado y algunas de segundo grado.

References: Babylonian Square Roots
Nelson, D., Joseph, G. and Williams, J. (1993). Multicultural Mathematics: Teaching Mathematics from a Global Perspective. New York: Oxford University Press.


Educación secundaria, enseñanza media, segundo ciclo de la educación general, Educación Secundaria Obligatoria (E.S.O), "escuela secundaria", "escuela preparatoria", high schools.